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Nonsimilar Solutions for Natural Convection about a
Vertical Circular Truncated Cone in Bidisperse
Porous Media
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Abstract

This paper obtains the nonsimilar solutions for natural convection heat transfer about a vertical circular
truncated cone in bidisperse porous media with constant wall temperature. The two-velocity two-temperature
model is used to derive the boundary layer governing equations. Nonsimilar differential equations obtained by a
suitable coordinate transformation are then solved by the spline collocation method. The relationship between
the inter-phase heat transfer parameter, the modified thermal conductivity ratio, or the permeability ratio
respectively with the heat transfer and flow characteristics has been studied. When the modified thermal
conductivity ratio or the permeability ratio of the bidisperse porous media is increased, the natural convection
heat transfer rate of the vertical circular truncated cone tends to increase. As the inter-phase heat transfer
parameter of bidisperse porous media is decreased, the thermal non-equilibrium between the two phases
becomes more significant.
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NOMENCLATURE

A half cone angle

c specific heat at constant pressure

f dimensionless stream function for the f-phase
g dimensionless stream function for the p-phase
g*  acceleration due to gravity

h inter-phase heat transfer coefficient

H inter-phase heat transfer parameter

k thermal conductivity

K permeability

K,  permeability ratio

Nu local Nusselt number

Ra  Darcy-Rayleigh number

T,  ambient temperature

T,  wall temperature

u,v dimensional velocity components along x and y axes
X,y dimensional Cartesian coordinates

Greek symbols

B modified thermal capacity ratio
S+ volumetric thermal expansion of the fluid

Y modified thermal conductivity ratio

£ porosity within the p-phase

c coefficient for momentum heat transfer between the two phases
n dimensionless transverse corrdinates

& dimensionless streamwise coordinates
Y7, viscosity of the fluid

pe  density of the fluid

o f-phase momentum transfer parameter
z porosity parameter

0 dimensionless temperature

) volume fraction of the f-phase

74 stream function

Subcripts

f fracture phase
p porous phase

l. Introduction

The problems of the natural convection heat and mass transfer in porous media saturated with fluids may be
met in real world. There has been considerable interest in studying flows of mixed convection heat and mass
transfer of Newtonian fluids in porous media. The applications are found in geothermal energy technology,
petroleum recovery, and underground disposal of chemical and nuclear waste.

The problem of mixed convection boundary layer flow from a vertical surface in a porous medium was
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examined by Ranganathan and Viskanta [1]. Minkowycz et al. [2] studied the mixed convection heat transfer
from a nonisothermal cylinder and sphere in a porous medium. Hsieh et al. [3] present nonsimilar solutions for
mixed convection heat transfer along a vertical plate in porous media. Kumari and Gorla [4] studied the mixed
convection along a vertical non-isothermal wedge embedded in a porous medium saturated with fluids. Lai [5]
presented similar solutions for the coupled heat and mass transfer by mixed convection from a vertical plate with
uniform wall temperature and concentration in a saturated porous medium. Yih [6] investigated the heat and
mass transfer in mixed convection over a wedge with variable wall temperature and concentration in a
fluid-saturated porous medium. Yih [7] studied the heat and mass transfer in mixed convection over a wedge in a
with variable wall heat flux and variable wall mass flux. Yih [8] studied the radiation effect on mixed convection
over an isothermal wedge in porous media: the entire regime, Cheng [9] studied the Soret and Dufour effects on
mixed convection heat and mass transfer from a vertical wedge in a porous medium with constant wall
temperature and concentration. Cheng [10] examined the Soret and Dufour effects on double-diffusive mixed
convection from a vertical wedge in porous media with constant wall heat and mass fluxes.

The applications of bidisperse porous medium are found in bidisperse absorbent for enhancing absorption
performance, or bidisperse capillary wicks in a heat pipe for enhancing heat pipe heat transfer rate. There are a
lot of papers on the natural or mixed convection of bidisperse porous media. Nield and Kuznetsov [1] studied the
conjugate forced convection heat transfer in bi-disperse porous medium channel. Nield and Kuznetsov [2] used a
two-velocity two-temperature model to study the forced convection in a channel for a bi-disperse porous medium.
Nield and Kuznetsov [3] examined the problem about the onset of convection in a bidisperse porous medium.
Nield and Kuznetsov [4] studied the effect of combined vertical and horizontal heterogeneity on the onset of
convection in a bidisperse porous medium. Nield and Kuznetsov [5] studied the natural convection about a
vertical plate embedded in a bidisperse porous medium. Rees et al. [6] studied the vertical free convective
boundary-layer flow in bidisperse porous media. Straughan [7] studied the Nield-Kuznetsiv theory for
convection in bidisperse porous media. Kumari and Pop [8] studied the mixed convection boundary layer flow
past a horizontal circular cylinder embedded in a bidisperse porous medium. Grosan et al. [9] studied the
problem of free convection in a square cavity filled with a bisisperse porous medium. Narasimhan and Reddy
[10] studied the natural convection inside a bidisperse porous medium enclosure. Narasimhan and Reddy [11]
examined the resonance of natural convection inside a bidisperse porous medium enclosure. Nield and
Kuznetsov [12] studied the forced convection in a channel partly occupied in a bidisperse porous medium.

This present work presents the nonsimilar solutions for the natural convection heat transfer from a vertical
circular truncated cone in bidisperse porous media with uniform wall temperature. The two-velocity
two-temperature formulation is used to derive the governing differential equations. A coordinate transformation
is used to transform the governing equations into the nonsimilar partial differential equations. The cubic spline
collocation method is used to solve the nonsimilar partial differential equations. The relationship between the
inter-phase heat transfer parameter, the modified thermal conductivity ratio, or the permeability ratio with the
natural convection heat transfer characteristics is studied.

I1. Analysis

Consider the boundary layer flow due to natural convection heat transfer from a vertical truncated cone of
half angle A embedded in a bidisperse porous medium. The origin of the coordinate system is placed at the
vertex of the truncated cone, with x being the coordinate along the surface of the cone measured from the origin
and y being the coordinate perpendicular to the conical surface, as shown in Fig.1. The surface of the vertical
cone is maintained at a constant temperature T, , which is different from the porous medium temperature
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sufficiently far from the surface of the vertical truncated cone.

A bidisperse porous medium is a porous medium in which the solid phase is replaced by another porous
medium. There are two phases, as shown in Fig. 2. One is the f-phase and the other is the p-phase. In a bidisperse
porous medium, the fluid occupies all of the f-phase and a fraction of the p-phase. We denote the volume fraction
of the f-phase by ¢ and the porosity within the p-phase by ¢. Thus 1-¢ is the volume fraction of the
p-phase, and the volume fraction of the bidisperse porous medium by the fluid is ¢+(1—¢)g. Here we denote
T¢ and T,as the volume-averaged temperature of the f-phase and the p-phase respectively. The volume
average of the temperature over the fluid is given by

_ ¢Tf +(1_¢)‘9Tp

F T =g @

The fluid properties are assumed to be constant except for density variations in the buoyancy force term.
The governing equations for the flow, heat transfer near the vertical cone can be written as [5, 13]

c’?(ruf )+ a(rvf ): 0 @)
OX oy

olru p ) N a(rvp ) -0 (3)
ox oy

(4)

~p
Fig. 1 Flow configuration and coordinate system.

p-phase
f-phase

«—

Fig. 2 Sketch of a bidisperse porous medium.
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In Egs. (2)-(7), where u; and v, are the volume-averaged velocity components of the f-phase in the x
and y directions. u, and v, are the volume-averaged velocity components of the p-phase in the the x

and y directions. K and K are the permeabilities of the two phases, and ¢ is the coefficient for
momentum transfer between the two phases. pg is the fluid density. f; is the volumetric thermal expansion

coefficient of the fluid. g is the viscosity of the fluid. Moreover, c is the specific heat at constant pressure and
k is the thermal conductivity. Moreover, h is the inter-phase heat transfer coefficient, and g* is the

gravitational acceleration.

Because the boundary layer thickness is small, the local radius to a point in the boundary layer can be

represented by the local radius of the vertical cone,

r=xsinA

The boundary conditions of the problem are

y=0; T¢ =Ty, Tp=T,, v, =0, v{=0

y—>owo; T >T,, T,>T,, u,—»0, uy >0

Here we introduce the stream functions, ¢ and y,, to satisfy the relations:

10y 10y " _ 10y,

_ 10y,

u_ [ il ,V
Ty gy f roox Pr ooy P r ox

Moreover, we define the nondimensional variables and parameters:

g = X=% y:l o Vo= (Pc)p v .= (pC); v
Xy , Xo, Xo, P (1_¢)kpxo P f ¢kfX0 "
T -T T,-T

af _ f oo, HPZ p 0
Ty —Ts Ty —T,

After performing the coordinate transform, Egs. (2)-(7) become the following equations:

Loy (O 0%y 1 0| Poi [0, ¥ 1 9wy
| ox?2 oy 1+X X F | ox?  oy2 1+X X

0
=Ra, {Tiﬂ'(l—f)i} +Ra, tan A|:r%+(1_1)6_9_p}
%y oy ox X

(®)

9)
(10)

(11)

(12)

(13)

It should be noted that the temperature and concentration profile functions defined in Egs. (9) and (10) also

satisfy the compatibility conditions and the smoothness conditions:

o (0’ 0%, 1 Oy Bl 1 62‘/7p 82'7,; 1 oy,
—— =t = o= |t 2| ot —t—— -
r| ox oy 1+X oX K, X . 1+X oOX

r
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where the Darcy-Rayleigh number based on the characteristic length x, and properties in the f-phase is given

by

ra = Pr9 AKX (T, T, Jos A
! Pk /(pc)f

Moreover, the modified thermal capacity ratio, the f-phase momentum transfer parameter, the porosity
parameter, permeability ratio, the modified thermal conductivity ratio, and the inter-phase heat transfer
parameter are respectively defined as

17

1-g)k,(pcC K K k 2
_( ¢)p(p)f'0f:g toL ¢ DK et Pk lehXO (18)
ok (pc), 7 p+01-g)e Ky (L-g)k, ok
The associated boundary conditions are given by
y=0: 7, =0, i, =0, 6, =1, 6,=1 (19)
ow oy
oo 50, X2 50, 6,50, 6,50 (20)
oy oy
Here we use the coordinate transformation given by
X=X, y=Ra'’y, F=r, v =Ra “%7;, ¥,=Ra "7, (1)

Substituting Eqg. (21) into Egs. (13)-(16) and using boundary- layer approximation, we can obtain the
following boundary-layer equations:

1+o, 0%y oy 060 060
~O-f -.l{/zf _ﬂff j{/zp :T_~f+(1_z_)_~p 22)
r o ro o oy oy
%y oy 00 00
s i/lzf +£[i+ f)fwzp —r—+(1-7)= (23)
r oy r LKr oy oy
%0 oy, 00, oy, 00
O _Ho, —p,) = L[ YO0 OV O (24)
oy* r{i oy ox oX oy
%0 oy, 260, oy, 6
b yH(p,-0,) = 2| Lo T Vo T (25)
r{ oy ox oX oy
We may reduce Egs. (22)-(25) to a form more convenient for numerical solution by the transformation:
E=X, n=y1&, y,=t&%(En), g, =TEP1(5m) (26)
Substituting Eq. (26) into Egs. (22)-(25), we obtain the following equations:
L+ )t'=poig =16, +1-1)8, 27)
—fo’+ﬂ(K;1+af)g':r6’f +(1—T)6’p (28)

v (1, € ko o ) §:90 g O
ef+(2+l+§j¢f9f HE(o, Gp)—¢§[f 5 0, agj (29)
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v Le = Ja-g)o, melo, -0,) - - | g 2 -0, B
9p+[2+1+§j(1 #)ae, - HElo, -0,) =0 ¢)‘§(g o& % 6§J -

where primes denote differentiation with respect to ». Note that the momentum equations have been integrated
once about # to obtain Egs. (27) and (28).

The boundary conditions are transformed to
n=0: f=0, g=0, 0, =1, 6,=1 (31)
n—wo: f'-0, g'>0, 6, >0, 6, >0 (32)
Moreover, the local Nusselt numbers for the f-phase and the p-phase can be derived as
Nu

— 0. (£,0 33
o t(£,0) (33)
o _ g(20) (34)

JRay

where Nu :hfx/kf and Nup=th/kp . Note that h, and h, are the convection heat transfer

coefficient for the f-phase and the p-phase. The Darcy-Rayleigh number based on the streamwise coordinate x
and properties in the f-phase is given by

:ng*:BT(Tw —Tw)KfX

R
o gk /(Pc)f

(35)

I11. Results and Discussion

The transformed governing partial differential equations, Eqgs. (29) and (30), and the associated boundary
conditions, Egs. (31) and (32), can be solved by the cubic spline collocation method [14]. The velocities f’
and g’ are calculated from the momentum equations, Eqs. (27) and (28). Moreover, the Simpson’s rule for
variable grids is used to calculate the values of f and g at every position from the boundary conditions, Egs. (31)
and (32). At every position, the iteration process continues until the convergence criterion for all the variables,
1075, is achieved. Variable grids with 350 grid points are used in the n -direction. The optimum value of
boundary layer thickness is used. Moreover, the backward finite difference is used to calculate the derivative
about the streamwise coordinate & Variable grids with 120 grid points are used in the &-direction. To assess the
accuracy of the solution, the present results are compared with the results obtained by other researchers. Table 1
shows the numerical values of —&,, at =0 for free convection heat transfer of a vertical smooth plate in
mono-disperse porous media with constant wall temperature. The present results are in excellent agreement with
the results reported by Cheng and Minkowycz [15] and Rees and Pop [16].

Table1 Comparison of values of —6,atn =0 for free convection heat transfer from a vertical plate
with constant wall temperature in mono-disperse porous media.

- 0'-,”‘) | n=0
Cheng and Rees and Pop Present
Minkowycz [16]

[15]
0.4440 0.44378 0.4442
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Fig. 3 Effect of permeability ratio on the temperature profiles for the f-phase and the p-phase for £=0.5,
H=06,8=1, y=02, o; =001, $4=0.2, £=04,and 7=0.3846.

Figure 3 shows the effect of the permeability ratio Kr on the temperature profiles for the f-phase and the
p-phase. As the permeability ratio is increased, both the boundary layers of the solid phase and the fluid phase
become thinner, thus increasing the temperature gradients of the f-phase and the p-phase. Moreover, a decrease
in the permeability ratio tends to increase the temperature difference between the f-phase and the p-phase, thus
enhancing the thermal non-equilibrium effect.

Figure 4 shows the effect of the inter-phase heat transfer parameter H on the temperature profiles for the
f-phase and the p-phase. Results show that a decrease in the inter-phase heat transfer parameter tends to increase
the temperature difference between the f-phase and the p-phase, thus enhancing the thermal non-equilibrium
effect. In other words, when the inter-phase heat transfer parameter is small, the temperature field corresponding
to the p-phase occupies a much greater region than does the temperature field of the f-phase.

1.0

0.0 TTT T[T T T T[T T T[T T T TT I [T [ TTiT[ T T
0 5 10 15 20 25 30 35 40

n

Fig. 4 Effect of the inter-phase heat transfer parameter on the temperature profiles for the f-phase and
the p-phase for £=0.5, K, =0.001, =1, y=0.2, o7 =001, ¢=0.2, £=0.4,and 7=0.3846"
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Fig. 5 Effect of the modified thermal conductivity ratio on the temperature profiles for the f-phase and
the p-phase for £=05, H =06, K, =0.001, =1, o =001, ¢=02, £¢=04,and 7=0.3846.

Figure 5 shows the effect of the modified thermal conductivity ratio y on the temperature profiles for the
f-phase and the p-phase of the bidisperse porous media near the vertical circular truncated cone. As the modified
thermal conductivity ratio is increased, both the boundary layers of the solid phase and the fluid phase become
thinner, thus increasing the temperature gradients of the f-phase and the p-phase. Moreover, decreasing the
modified thermal conductivity ratio increases the temperature difference between the f-phase and p-phase, thus
enhancing the thermal non-equilibrium effect.

Figure 6 shows the effect of the permeability ratio K, on the local Nusselt numbers for the f-phase and
the p-phase. Results show that an increase in the permeability ratio tends to increase both the local Nusselt
numbers for the f-phase and the p-phase. In other words, the heat transfer rate for the bidisperse porous medium
can be effectively increased by raising the permeability ratio. Moreover, with smaller coordinates, the local
Nusselt number for the f-phase is much higher than that for the p-phase. The two phases are in the state of
thermal non-equilibrium. As the streamwise coordinate is increased, the local Nusselt number for the f-phase
approaches that for the p-phase. The bidisperse porous medium gradually approaches the state of thermal
equilibrium far downstream.

Kr=0.1

Nu
Ra,
010~ .-~ Kkr=0.001
0.05 -
0.00 _|||||||||I|||||||||I|||||||||I||||I||||I||||I||||

0 1 2 3 4 5 6 7 8 9 10

4

Fig. 6 Effect of the permeability ratio on the local Nusselt numbers for the f-phase and the p-phase for
H=06, =1, y=02, o4 =001, ¢$=0.2, ¢=04,and 7=0.3846.
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Fig. 7 Effect of the inter-phase heat transfer parameter on the local Nusselt numbers for the f-phase and
the p-phase for K, =0.001, =1, y=02, o; =001, $=0.2, ¢=04,and 7=0.3846.

Figure 7 shows the effect of the inter-phase heat transfer parameter H on the local Nusselt numbers for the
f-phase and the p-phase. For a vertical circular truncated cone, decreasing the inter-phase heat transfer parameter
tends to increase the difference between local Nusselt numbers for the f-phase and the p-phase. In other words,
lower values of the inter-phase heat transfer parameter leads to the state of thermal non-equilibrium between the
p-phase and the f-phase of the bidisperse porous medium. This thermal non-equilibrium phenomenon is more
significant near the leading edge the vertical truncated circular cone.

Figure 8 shows the effect of the modified thermal conductivity ratio y on the local Nusselt numbers for
the f-phase and the p-phase. For a vertical circular truncated cone, an increase in the modified thermal
conductivity ratio y tends to increase both the local Nusselt number for the f-phase and local Nusselt number
for the p-phase. In other words, the heat transfer rate for the bidisperse porous medium can be effectively
increased by raising the modified thermal conductivity ratio.

0.25

o
[¥)
o

o
=
(&}

Nu
Ra

0.10 !

000 IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII
o 1 2 3 4 5 6 7 8 9 10

5

Fig. 8 Effect of the modified thermal conductivity ratio on the local Nusselt numbers for the f-phase and
the p-phase for H =06, K, =0.001, #=1, o; =0.01, ¢=0.2, £=0.4,and 7=0.3846.
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1. Conclusions

The nonsimilar solutions for the natural convection heat transfer from a vertical circular truncated cone
embedded in bidisperse porous media with constant wall temperature have been obtained. This work uses the
two-velocity two-temperature model and the coordinate transform to derive the nonsimilar boundary layer
governing equations. The cubic spline collocation method is used to solve the nonsimilar partial differential
equations. The relationship between the inter-phase heat transfer parameter, the modified thermal conductivity
ratio, or the permeability ratio with the natural convection heat transfer characteristics has been studied. When
the modified thermal conductivity ratio or the permeability ratio of the bidisperse porous media is increased, the
natural convection heat transfer rate of the vertical circular truncated cone tends to increase. Moreover, lower
values of the inter-phase heat transfer parameter leads to the state of thermal non-equilibrium between the
p-phase and the f-phase of the bidisperse porous medium, especially near at the leading edge of the vertical
circular truncated cone.
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