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雙分散多孔介質內垂直截圓錐自然對流 

之非相似解 
鄭慶陽 

南臺科技大學機械工程系 
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摘要 

本文求得雙分散多孔介質內垂直截圓錐自然對流熱傳遞之非相似解，而且此一垂直截圓錐具有均勻

壁溫。以雙速度與雙溫度模型導出邊界層統制方程式。經由適當之座標轉換求得非相似微分方程式，再

以三次樣線配置法求解。研究相間熱傳參數、修正熱導率比、或滲透率比與熱傳與流動特性之關係。當

雙分散多孔介質之修正熱導率比或滲透率比增大時，垂直截圓錐表面之自然對流熱傳率會隨之變大。而

當雙分散多孔介質之相間熱傳參數減少時，兩相間之熱不平衡狀態會更為明顯。 

關鍵詞：非相似解、自然對流、截圓錐、雙分散多孔介質 
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Abstract 

This paper obtains the nonsimilar solutions for natural convection heat transfer about a vertical circular 

truncated cone in bidisperse porous media with constant wall temperature. The two-velocity two-temperature 

model is used to derive the boundary layer governing equations. Nonsimilar differential equations obtained by a 

suitable coordinate transformation are then solved by the spline collocation method. The relationship between 

the inter-phase heat transfer parameter, the modified thermal conductivity ratio, or the permeability ratio 

respectively with the heat transfer and flow characteristics has been studied. When the modified thermal 

conductivity ratio or the permeability ratio of the bidisperse porous media is increased, the natural convection 

heat transfer rate of the vertical circular truncated cone tends to increase. As the inter-phase heat transfer 

parameter of bidisperse porous media is decreased, the thermal non-equilibrium between the two phases 

becomes more significant. 

Keywords: Nonsimilar Solutions, Natural Convection, Circular Truncated Cone, Bidisperse Porous 

Medium  
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NOMENCLATURE 

A   half cone angle 

c  specific heat at constant pressure 

f   dimensionless stream function for the f-phase 

g   dimensionless stream function for the p-phase 

g   acceleration due to gravity 

h   inter-phase heat transfer coefficient 

H   inter-phase heat transfer parameter 

k   thermal conductivity 

K   permeability 

rK   permeability ratio 

Nu   local Nusselt number 

Ra   Darcy-Rayleigh number  

T  ambient temperature 

wT  wall temperature 

v,u   dimensional velocity components along x and y axes 

y,x  dimensional Cartesian coordinates  

 

Greek symbols 

   modified thermal capacity ratio 

T   volumetric thermal expansion of the fluid 

   modified thermal conductivity ratio 

   porosity within the p-phase 

   coefficient for momentum heat transfer between the two phases 

   dimensionless transverse corrdinates 

   dimensionless streamwise coordinates 

   viscosity of the fluid 

F   density of the fluid 

f    f-phase momentum transfer parameter 

   porosity parameter 

   dimensionless temperature 

   volume fraction of the f-phase 

   stream function 

 

Subcripts 

f  fracture phase 

p  porous phase 

 

I. Introduction 

The problems of the natural convection heat and mass transfer in porous media saturated with fluids may be 

met in real world. There has been considerable interest in studying flows of mixed convection heat and mass 

transfer of Newtonian fluids in porous media. The applications are found in geothermal energy technology, 

petroleum recovery, and underground disposal of chemical and nuclear waste. 

 The problem of mixed convection boundary layer flow from a vertical surface in a porous medium was 
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examined by Ranganathan and Viskanta [1]. Minkowycz et al. [2] studied the mixed convection heat transfer 

from a nonisothermal cylinder and sphere in a porous medium. Hsieh et al. [3] present nonsimilar solutions for 

mixed convection heat transfer along a vertical plate in porous media. Kumari and Gorla [4] studied the mixed 

convection along a vertical non-isothermal wedge embedded in a porous medium saturated with fluids. Lai [5] 

presented similar solutions for the coupled heat and mass transfer by mixed convection from a vertical plate with 

uniform wall temperature and concentration in a saturated porous medium. Yih [6] investigated the heat and 

mass transfer in mixed convection over a wedge with variable wall temperature and concentration in a 

fluid-saturated porous medium. Yih [7] studied the heat and mass transfer in mixed convection over a wedge in a 

with variable wall heat flux and variable wall mass flux. Yih [8] studied the radiation effect on mixed convection 

over an isothermal wedge in porous media: the entire regime, Cheng [9] studied the Soret and Dufour effects on 

mixed convection heat and mass transfer from a vertical wedge in a porous medium with constant wall 

temperature and concentration. Cheng [10] examined the Soret and Dufour effects on double-diffusive mixed 

convection from a vertical wedge in porous media with constant wall heat and mass fluxes. 

The applications of bidisperse porous medium are found in bidisperse absorbent for enhancing absorption 

performance, or bidisperse capillary wicks in a heat pipe for enhancing heat pipe heat transfer rate. There are a 

lot of papers on the natural or mixed convection of bidisperse porous media. Nield and Kuznetsov [1] studied the 

conjugate forced convection heat transfer in bi-disperse porous medium channel. Nield and Kuznetsov [2] used a 

two-velocity two-temperature model to study the forced convection in a channel for a bi-disperse porous medium. 

Nield and Kuznetsov [3] examined the problem about the onset of convection in a bidisperse porous medium. 

Nield and Kuznetsov [4] studied the effect of combined vertical and horizontal heterogeneity on the onset of 

convection in a bidisperse porous medium. Nield and Kuznetsov [5] studied the natural convection about a 

vertical plate embedded in a bidisperse porous medium. Rees et al. [6] studied the vertical free convective 

boundary-layer flow in bidisperse porous media. Straughan [7] studied the Nield-Kuznetsiv theory for 

convection in bidisperse porous media. Kumari and Pop [8] studied the mixed convection boundary layer flow 

past a horizontal circular cylinder embedded in a bidisperse porous medium. Grosan et al. [9] studied the 

problem of free convection in a square cavity filled with a bisisperse porous medium. Narasimhan and Reddy 

[10] studied the natural convection inside a bidisperse porous medium enclosure. Narasimhan and Reddy [11] 

examined the resonance of natural convection inside a bidisperse porous medium enclosure. Nield and 

Kuznetsov [12] studied the forced convection in a channel partly occupied in a bidisperse porous medium. 

This present work presents the nonsimilar solutions for the natural convection heat transfer from a vertical 

circular truncated cone in bidisperse porous media with uniform wall temperature. The two-velocity 

two-temperature formulation is used to derive the governing differential equations. A coordinate transformation 

is used to transform the governing equations into the nonsimilar partial differential equations. The cubic spline 

collocation method is used to solve the nonsimilar partial differential equations. The relationship between the 

inter-phase heat transfer parameter, the modified thermal conductivity ratio, or the permeability ratio with the 

natural convection heat transfer characteristics is studied.  

II. Analysis 

Consider the boundary layer flow due to natural convection heat transfer from a vertical truncated cone of 

half angle A embedded in a bidisperse porous medium. The origin of the coordinate system is placed at the 

vertex of the truncated cone, with x being the coordinate along the surface of the cone measured from the origin 

and y being the coordinate perpendicular to the conical surface, as shown in Fig.1. The surface of the vertical 

cone is maintained at a constant temperature wT , which is different from the porous medium temperature 
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sufficiently far from the surface of the vertical truncated cone.  

A bidisperse porous medium is a porous medium in which the solid phase is replaced by another porous 

medium. There are two phases, as shown in Fig. 2. One is the f-phase and the other is the p-phase. In a bidisperse 

porous medium, the fluid occupies all of the f-phase and a fraction of the p-phase. We denote the volume fraction 

of the f-phase by   and the porosity within the p-phase by  . Thus 1  is the volume fraction of the 

p-phase, and the volume fraction of the bidisperse porous medium by the fluid is    1 . Here we denote 

fT  and pT as the volume-averaged temperature of the f-phase and the p-phase respectively. The volume 

average of the temperature over the fluid is given by  
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The fluid properties are assumed to be constant except for density variations in the buoyancy force term. 

The governing equations for the flow, heat transfer near the vertical cone can be written as [5, 13]  
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Fig. 1  Flow configuration and coordinate system. 

 

 

 

 

 

Fig. 2  Sketch of a bidisperse porous medium.  
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In Eqs. (2)-(7), where fu  and fv  are the volume-averaged velocity components of the f-phase in the x  

and y  directions. pu  and pv  are the volume-averaged velocity components of the p-phase in the the x  

and y  directions. fK  and pK are the permeabilities of the two phases, and   is the coefficient for 

momentum transfer between the two phases. F  is the fluid density. T  is the volumetric thermal expansion 

coefficient of the fluid.   is the viscosity of the fluid. Moreover, c is the specific heat at constant pressure and 

k  is the thermal conductivity. Moreover, h  is the inter-phase heat transfer coefficient, and *g  is the 

gravitational acceleration.  

Because the boundary layer thickness is small, the local radius to a point in the boundary layer can be 

represented by the local radius of the vertical cone, 

Asinxr   (8) 

The boundary conditions of the problem are 

0y ; wf TT  , wp TT  , 0pv , 0fv       (9) 

y ; TT f , TTp , 0pu , 0fu    (10) 

Here we introduce the stream functions, f  and p , to satisfy the relations: 
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Moreover, we define the nondimensional variables and parameters: 
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After performing the coordinate transform, Eqs. (2)-(7) become the following equations: 
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It should be noted that the temperature and concentration profile functions defined in Eqs. (9) and (10) also 

satisfy the compatibility conditions and the smoothness conditions: 
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where the Darcy-Rayleigh number based on the characteristic length 
0x

 
and properties in the f-phase is given 

by 
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Moreover, the modified thermal capacity ratio, the f-phase momentum transfer parameter, the porosity 

parameter, permeability ratio, the modified thermal conductivity ratio, and the inter-phase heat transfer 

parameter are respectively defined as  
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The associated boundary conditions are given by 

0y : 0f , 0p , 1f , 1p   (19) 
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Here we use the coordinate transformation given by  
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Substituting Eq. (21) into Eqs. (13)-(16) and using boundary- layer approximation, we can obtain the 

following boundary-layer equations: 
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We may reduce Eqs. (22)-(25) to a form more convenient for numerical solution by the transformation: 
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Substituting Eq. (26) into Eqs. (22)-(25), we obtain the following equations:  
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12
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































f
f f

f
 (29) 
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   fppp Hg 



 










 1

12

1
  
































g
g p

p
1  (30) 

where primes denote differentiation with respect to η. Note that the momentum equations have been integrated 

once about η to obtain Eqs. (27) and (28).  

The boundary conditions are transformed to 

0 : 0f , 0g , 1f , 1p   (31) 

 : 0f , 0g , 0f , 0p  (32) 

Moreover, the local Nusselt numbers for the f-phase and the p-phase can be derived as 

 0,
Ra

Nu
f

x

f
   (33) 

 0,
Ra

Nu
p

x

p
 

 
(34) 

where 
fff kxhNu   and 

ppp kxhNu  . Note that 
fh  and 

ph  are the convection heat transfer 

coefficient for the f-phase and the p-phase. The Darcy-Rayleigh number based on the streamwise coordinate x  

and properties in the f-phase is given by 

 

 
ff

fwTF

x
ck

xKTTg
Ra



 

 
  (35) 

III. Results and Discussion 

The transformed governing partial differential equations, Eqs. (29) and (30), and the associated boundary 

conditions, Eqs. (31) and (32), can be solved by the cubic spline collocation method [14]. The velocities f   

and g  are calculated from the momentum equations, Eqs. (27) and (28). Moreover, the Simpson’s rule for 

variable grids is used to calculate the values of f and g at every position from the boundary conditions, Eqs. (31) 

and (32). At every position, the iteration process continues until the convergence criterion for all the variables, 

610 , is achieved. Variable grids with 350 grid points are used in the  -direction. The optimum value of 

boundary layer thickness is used. Moreover, the backward finite difference is used to calculate the derivative 

about the streamwise coordinate ξ. Variable grids with 120 grid points are used in the ξ-direction. To assess the 

accuracy of the solution, the present results are compared with the results obtained by other researchers. Table 1 

shows the numerical values of mp  at 0 for free convection heat transfer of a vertical smooth plate in 

mono-disperse porous media with constant wall temperature. The present results are in excellent agreement with 

the results reported by Cheng and Minkowycz [15] and Rees and Pop [16]. 

Table 1  Comparison of values of mp  at 0  for free convection heat transfer from a vertical plate 

with constant wall temperature in mono-disperse porous media. 

 
0




mp   

Cheng and 

Minkowycz  

[15] 

Rees and Pop 

[16]  

Present 

0.4440 0.44378 0.4442 
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Fig. 3 Effect of permeability ratio on the temperature profiles for the f-phase and the p-phase for 5.0 , 

6.0H , 1 , 2.0 , 01.0f , 2.0 , 4.0 , and 3846.0 . 

Figure 3 shows the effect of the permeability ratio Kr on the temperature profiles for the f-phase and the 

p-phase. As the permeability ratio is increased, both the boundary layers of the solid phase and the fluid phase 

become thinner, thus increasing the temperature gradients of the f-phase and the p-phase. Moreover, a decrease 

in the permeability ratio tends to increase the temperature difference between the f-phase and the p-phase, thus 

enhancing the thermal non-equilibrium effect.  

Figure 4 shows the effect of the inter-phase heat transfer parameter H on the temperature profiles for the 

f-phase and the p-phase. Results show that a decrease in the inter-phase heat transfer parameter tends to increase 

the temperature difference between the f-phase and the p-phase, thus enhancing the thermal non-equilibrium 

effect. In other words, when the inter-phase heat transfer parameter is small, the temperature field corresponding 

to the p-phase occupies a much greater region than does the temperature field of the f-phase. 

 

 

 

 

 

 

 

 

Fig. 4  Effect of the inter-phase heat transfer parameter on the temperature profiles for the f-phase and 

the p-phase for 5.0 , 001.0rK , 1 , 2.0 , 01.0f , 2.0 , 4.0 , and 3846.0 . 
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Fig. 5  Effect of the modified thermal conductivity ratio on the temperature profiles for the f-phase and 

the p-phase for 5.0 , 6.0H , 001.0rK , 1 , 01.0f , 2.0 , 4.0 , and 3846.0 . 

Figure 5 shows the effect of the modified thermal conductivity ratio   on the temperature profiles for the 

f-phase and the p-phase of the bidisperse porous media near the vertical circular truncated cone. As the modified 

thermal conductivity ratio is increased, both the boundary layers of the solid phase and the fluid phase become 

thinner, thus increasing the temperature gradients of the f-phase and the p-phase. Moreover, decreasing the 

modified thermal conductivity ratio increases the temperature difference between the f-phase and p-phase, thus 

enhancing the thermal non-equilibrium effect. 

Figure 6 shows the effect of the permeability ratio rK  on the local Nusselt numbers for the f-phase and 

the p-phase. Results show that an increase in the permeability ratio tends to increase both the local Nusselt 

numbers for the f-phase and the p-phase. In other words, the heat transfer rate for the bidisperse porous medium 

can be effectively increased by raising the permeability ratio. Moreover, with smaller coordinates, the local 

Nusselt number for the f-phase is much higher than that for the p-phase. The two phases are in the state of 

thermal non-equilibrium. As the streamwise coordinate is increased, the local Nusselt number for the f-phase 

approaches that for the p-phase. The bidisperse porous medium gradually approaches the state of thermal 

equilibrium far downstream.  

 

 

 

 

 

 

Fig. 6  Effect of the permeability ratio on the local Nusselt numbers for the f-phase and the p-phase for 

6.0H , 1 , 2.0 , 01.0f , 2.0 , 4.0 , and 3846.0 . 
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Fig. 7  Effect of the inter-phase heat transfer parameter on the local Nusselt numbers for the f-phase and 

the p-phase for 001.0rK , 1 , 2.0 , 01.0f , 2.0 , 4.0 , and 3846.0 . 

Figure 7 shows the effect of the inter-phase heat transfer parameter H on the local Nusselt numbers for the 

f-phase and the p-phase. For a vertical circular truncated cone, decreasing the inter-phase heat transfer parameter 

tends to increase the difference between local Nusselt numbers for the f-phase and the p-phase. In other words, 

lower values of the inter-phase heat transfer parameter leads to the state of thermal non-equilibrium between the 

p-phase and the f-phase of the bidisperse porous medium. This thermal non-equilibrium phenomenon is more 

significant near the leading edge the vertical truncated circular cone.  

Figure 8 shows the effect of the modified thermal conductivity ratio 
 

on the local Nusselt numbers for 

the f-phase and the p-phase. For a vertical circular truncated cone, an increase in the modified thermal 

conductivity ratio   tends to increase both the local Nusselt number for the f-phase and local Nusselt number 

for the p-phase. In other words, the heat transfer rate for the bidisperse porous medium can be effectively 

increased by raising the modified thermal conductivity ratio. 

 

 

  

 

 

 

 

 

Fig. 8  Effect of the modified thermal conductivity ratio on the local Nusselt numbers for the f-phase and 

the p-phase for 6.0H , 001.0rK , 1 , 01.0f , 2.0 , 4.0 , and 3846.0 . 

  

xRa

Nu
 

0 1 2 3 4 5 6 7 8 9 10

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

f-phase

p-phase

H=0.6

H=1.2

  

xRa

Nu
 

0 1 2 3 4 5 6 7 8 9 10

0.00

0.05

0.10

0.15

0.20

0.25





f-phase

p-phase



鄭慶陽／南臺學報工程科學類 第 1卷第 1期 2016年 3月 13—24                23 

IV. Conclusions 

The nonsimilar solutions for the natural convection heat transfer from a vertical circular truncated cone 

embedded in bidisperse porous media with constant wall temperature have been obtained. This work uses the 

two-velocity two-temperature model and the coordinate transform to derive the nonsimilar boundary layer 

governing equations. The cubic spline collocation method is used to solve the nonsimilar partial differential 

equations. The relationship between the inter-phase heat transfer parameter, the modified thermal conductivity 

ratio, or the permeability ratio with the natural convection heat transfer characteristics has been studied. When 

the modified thermal conductivity ratio or the permeability ratio of the bidisperse porous media is increased, the 

natural convection heat transfer rate of the vertical circular truncated cone tends to increase. Moreover, lower 

values of the inter-phase heat transfer parameter leads to the state of thermal non-equilibrium between the 

p-phase and the f-phase of the bidisperse porous medium, especially near at the leading edge of the vertical 

circular truncated cone.  
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